
LLNL-TR-635973

Compositional Dataflow Via
Abstract Transition Systems

G. Bronevetsky, M. Burke, S. Aananthakrishnan,
J. Zhao, V. Sarkar

May 2, 2013

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

Compositional Dataflow via
Abstract Transition Systems

Greg Bronevetsky1 Michael G. Burke2 Sriram Aananthakrishnan3

Jisheng Zhao2 Vivek Sarkar2

1Lawrence Livermore National Laboratory, 2Rice University, 3University of Utah

Abstract. Despite decades of research and development of dataflow
analyses within dozens of different compiler infrastructures, analysis of
real programs is intractable in practice. The reason is that although a
single research group is equipped to model a single well-defined aspect
of application behavior, application developers use a very wide range of
abstractions and coding techniques within a single application. Since to
analyze even a single application all of its complexities must be modeled,
researchers must combine analyses from multiple groups into compre-
hensive analysis frameworks such as OpenAnalysis or LLVM. Analysis
composition is expensive in practice, requiring development effort that is
quadratic in the number of analyses as well as tight inter-group coordina-
tion to maintain consistent APIs to each other’s symbolic abstractions.

This paper proposes an approach to building compiler analysis frame-
works that simplifies the composition of independently-developed anal-
yses. It formalizes the operation of dataflow analyses in a way that sim-
plifies reasoning about various types of analysis composition. Further, it
defines a portable abstraction that can represent the results of many real
analyses, making it possible for different analyses to leverage each other’s
results with no knowledge of their APIs or internal abstrac-
tions and without any coordination between the groups that
developed them. We have developed the Fuse compositional analysis
framework based on this abstraction, and integrated it in the ROSE [15]
compilation system. Our experience is that this approach greatly simpli-
fies composition of program analyses, making it easy to tailor different
combinations of program analyses to different input programs.

1 Introduction
Composition of multiple analyses is critical for analyzing even simple applica-
tions, such as the example in Figure 1. To show that this code must print 10
it is necessary to propagate the constant values of x and y, eliminate the dead
branch of the if, propagate the points-to information from the remaining branch
to the print operation and finally perform more constant propagation to con-
nect the memory location of *p with 5 and conclude that *p+5 is 10. Although
all these inferences required for this simple example can be performed by a single
monolithic analysis, support for real applications requires many more analyses
that require the work of many different developers. Since the complexity of co-
ordinating contributions to a single analysis scales poorly with the number of

int x=5;
int y=12;
int* p;
if(x<y) p = &x;
else p = &y;
print *p+5;

int x=5;
int y=12;
int* p;
if(TRUE) p = &x;
else p = &y;
print *p+5;

Value
Analysis

int x=5;
int y=12;
int* p;
p = &x;

print x+5;

Points-to
Analysis

int x=5;
int y=12;
int* p;

print 10;

Value
Analysis

Original
Program

int x=5;
int y=12;
int* p;
if(x<y) p = &x;
else p = &y;
print *p+5;

Client
Analysis

?
Fig. 1: Application of analysis which chain to example program

developers it is necessary to modularize the overall analysis task into smaller
composable analyses that individual developers can focus on.

Composing analyses requires the development of interfaces via which the
results of one analysis can be used by another. While this is easy for a few
analyses, to enable any analysis to leverage the results of any other requires
development work that is quadratic in the number of analyses. Further, these
interfaces must be maintained across many versions of each analysis module. The
complexity of this approach and its ongoing costs means that it is best suited
to well-coordinated compiler development groups that can proactively plan the
few analysis pairs that need to be composed and provide long-term support for
these couplings.

An alternative approach is to provide common interfaces for classes of analy-
ses, such as the LLVM Alias Analysis interface [2]. While these work well for a few
well-established analysis classes, the many different abstractions in common use
makes this difficult in many domains. For example, a common interface for anal-
yses that compute constraints on numerical values must account for constants,
ranges, linear inequalities and polynomial equalities. Since a comprehensive in-
terface must support very complex functional forms, no such interface has been
created in practice. As such, the category of interfaces that exist in practice
cover few analyses, as evidenced by the fact that LLVM includes only the Alias
Analysis interface, which abstracts the results of just five analyses.

This paper presents a new approach to developing and composing modu-
lar compiler analyses based on a single portable formalism that represents the
operation of any dataflow analysis and makes it possible to reason uniformly
about the inferences made by any analysis. Our work primarily focuses on sym-
bolic dataflow analyses, by which we mean analyses that compute a symbolic
over-approximation of the set of possible application executions by symbolically
evaluating the application until a fixed point is reached. This includes static
dataflow analysis [12], abstract interpretation [4] and symbolic model check-
ing [18]. In this paper all these types of analysis are denoted “dataflow”. We
do not consider other types of analysis such as graph analyses (e.g. detection or
dominators or post-dominators) or property verification.

Our formalism is based on the classic notion of abstract transition systems [4].
Each dataflow analysis is executed on top of one such transition system, asso-
ciating its own abstract state representation with the transition system’s states

and updating it via its own transition relation. In turn, the analysis implements
another abstract transition system on which other dataflow analyses may run,
using its state representation to specify the states and transitions of this sys-
tem. We focus on a class of predicates that only maintains information at the
granularity of the abstract transition system implemented by their analysis and
cannot be used to infer more precise information. This class includes a wide
range of analysis, such as classic may- and must-analyses. Each predicate, which
denotes a set of executions of a transition system can be be represented portably
as an execution of a related transition system where the concrete values, memory
locations and operations are replaced with sets of these entities. This transfor-
mation restructures the original sets of executions, which are unbounded, into
executions of the new system where unbounded-size sets of individual state com-
ponents are organized in a bounded-size structure. This enables analyses to get
opaque objects that denote these unbounded sets and we demonstrate that if
these objects implement several key operations arbitrary analyses can use them
to perform most analysis tasks. Figure 10 in Section 7 demonstrates how the
code sample from Figure 1 can be precisely analyzed using our system.

The main contributions of our work are:

– A formalization of dataflow analyses in terms of executions over abstract
transition systems.

– A general abstract representation of analysis results as executions of a set-
based transition system that enables composition of multiple analyses.

– A portable encoding of the results of any analysis that is independent of its
internal APIs or abstractions.

– A demonstration of the practicality of our approach via a real implementa-
tion of the Fuse compositional analysis framework based on our formalism.

2 Summary of Approach
The set of possible application executions can be specified as a transition rela-
tion on application states and dataflow analyses attempt to precisely characterize
this set. Since in general the set of executions is undecidable, dataflow analyses
symbolically over-approximate the true set: all possible executions are in the
approximation but some executions it includes are not possible (the approxima-
tion is sound but incomplete). This over-approximation is specified in terms of an
abstract transition system (“abstraction” for short), where states are disjoint1

subsets of sub-executions (finitely-long prefixes or suffixes of full executions).
There is a transition from abstract state s1 to state s2 if there is a transition
from a member of s1 to a member of s2.

They key idea of composable dataflow is that analyses can both run on ab-
stract transition systems and implement new systems that other analyses will
run on. Figure 2 illustrates this by showing a simple code example and four
abstractions that over-approximate its set of possible executions. Figure 2(b)

1 The disjointness condition can be easily relaxed to allow a wider range of analyses,
as done with the Trace Partitioning Domain [17]. However, since this significantly
complicates the exposition we focus on the disjoint case.

shows a simple abstraction with one state for each control location in the pro-
gram that denotes all sub-executions that terminate at that location. This is
equivalent to a Control Flow Graph(CFG). This abstraction places the con-
straint that all executions that reach control location C may never return to lo-
cation A but does not restrict the possible variable values. Figures 2(c) and 2(d)
show how the initial CFG abstraction can be refined by additional abstractions
that focus on inequalities and parity (Even/Odd) relationships, respectively.

B B

A

C

x≥10

x≥10 x<10

CFG + Inequalities + Parity

y:E, z:O

x<10 y:E, z:O x<10 y:O, z:E

x<10 y:E, z:O x<10 y:O, z:E

A

x=input_read(); y=0; z=1;
while(x<10) {
 x++; y++; z++;
}

A:
B:
C:

Application

A

B

C

y:E, z:O

y:E, z:O y:O, z:E

y:E, z:O y:O, z:E

CFG + Parity

A B
C

Control Flow Graph (CFG)

A

B

C

x≥10 x<10

x≥10 x<10

x<10

CFG + Inequalities

(a) (b)

(c) (d)

(e)

Fig. 2: Sequence of composed analyses

The new analyses run on
the transition graph of the
CFG abstraction and either
constrain the set of sub-
executions that may exist
in each state (e.g. in Fig-
ure 2(c) x must be < 10
in state C) and/or parti-
tion states into multiple dis-
joint subsets (e.g. in Fig-
ure 2(d) state B is parti-
tioned into sub-states for
the cases where y is Even
and z is Odd and vice
versa). The new constraints
remove additional invalid
executions from consider-
ation, such as executions
that reach state B with x <
10 and then immediately
terminate execution.

Finally, Figure 2(e) shows
the result of composing the
three analyses in sequence, first CFG then inequality and finally parity. Each
analysis runs on the abstract transition system of its predecessor, refining the
sets of the predecessor’s states and/or partitioning these states into smaller sub-
sets. As part of their work analyses need to be informed of both the structure
of the transition system they run on as well as any information that is known
at each state (e.g. the parity analysis may need to know a variable’s sign, which
the inequality analysis can provide). An analysis is denoted as a “server” if it
implements an abstraction for others to run on and a “client” if it runs on an
abstraction provided by another analysis. Fore example, in Figure 1, we saw a
client analysis at the end of a composition chain which used a preceding value
analysis as its server analysis.

The basic concepts of analysis composition are formalized in Sections 3 and 4.
Section 3 defines concrete and abstract transition systems. Sections 4 specifies
the classic least fixed-point algorithm for computing the solution of dataflow

analyses within this formalism, and shows how the results of dataflow analyses
can be used to define the abstractions that other analyses run on.

Each state in an abstract transition system is defined by a logical predi-
cate that carries analysis-generated constraints; Section 5 considers how these
predicates serve to denote the sub-executions within their respective states and
how their information can be made available to arbitrary analyses. Section 6
demonstrates the utility of this representation by showing how it can be applied
in practice to define a portable interface to communicate analysis results. Sec-
tion 7 then describes the concrete interface of the Fuse compositional analysis
framework that we have implemented as part of the ROSE [15] source-to-source
compiler. Finally, Section 8 summarizes related work on analysis composition
and Section 9 concludes.

3 Transition Systems

We define analysis composition in terms of a formal model of dataflow analysis
that is based on prior work on formalizing abstract interpretation [4] and its
relationship to dataflow analyses [12] and model checking [18]. It focuses on
executions of a concrete transition system and how they relate to executions of
an abstract transition system. Our formalization (i) establishes a common set
of concepts and terms to describe dataflow analyses, and (ii) define how the
results of one analysis can be used by another. Sections 5 and 6 discuss how this
information can be communicated via a single portable representation.

We define compositional dataflow by first defining transition systems and the
set of their possible executions. We then define the notion of abstract transition
systems, or “abstractions”, that over-approximate concrete ones by grouping
multiple concrete sub-executions into a single abstract state and extending the
concrete transition relation to these states. We then define dataflow analysis as
a procedure for computing a more precise abstraction AM (states denote fewer
executions) given a less precise abstraction AL by symbolically evaluating AM ’s
transition relation on top of AL’s abstract state transition system. Additional
dataflow analyses can then be executed on the AM transition system. Finally, we
show how standard notions of dataflow (e.g. may and must analysis) are captured
by this definition and apply it to define two types of analysis composition.

A concrete transition system C is defined as 〈S, Sinit, Sfin, τ〉. S is the set of
all system states, each of which includes information about the current config-
uration of the computation (defined in more detail in Section 5.1). Sinit ⊆ S
is the set of initial system states, which accounts for all possible application
inputs and Sfin ⊆ S is the set of final states. τ : S × S is the transition

relation, written s
τ→ s′(s, s′ ∈ S), which identifies valid state transitions. Set

AllE contains all finite and infinite sequences of states (denoted “executions”)
in S and E ⊆ AllE contains just the executions that can actually occur. In the
general case membership in E is undecidable since transition system C may be
Turing-Complete. A “sub-execution” se of some execution e ∈ AllE is a finite
contiguous sub-sequence of e. “Forward” sub-executions start at some state in
sinit ∈ Sinit and continue for a finite number of succeeding states 〈sinit, s1, ...sn〉

such that sinit ∈ Sinit and si
τ→ si+1. Similarly, “Backward” sub-executions

end at a state ∈ Sfin and contain a finite number of preceding states. Infinite
executions do not have backward sub-executions.

Let AllSEfw and AllSEbw be the sets of all forward and backward sub-
executions of executions in AllE, respectively. Let SEfw and SEbw be the cor-
responding sets of sub-executions of the executions in E. We omit the fw and bw

where they are clear. An “extension” of a forward sub-execution 〈sinit, ...sn〉 is
a sub-execution 〈sinit, ...sn, sn+1〉 and conversely for backward sub-executions.

se
τ⇒ se′(se, se′ ∈ AllSE) denotes that se′ is an extension of se.

An abstract transition system Â is defined as (thêsymbol identifies entities of

an abstract transition system). States ŝe ∈ ŜE are disjoint sets of either forward
or backward sub-executions such that SE ⊆

⋃
ŝe∈ŜE ŝe. Let O(Q) denote an

over-approximation of set Q (Q ⊆ O(Q)). For forward abstractions ŜEinit =

{〈sinit〉 | sinit ∈ O(Sinit)} and ŜEfin = {〈sinit, ..., sfin〉 | sfin ∈ O(Sfin)} and
the converse is true for backwards. Transition relation τ̂ maps one set of sub-
executions to the over-approximation of the set of their extensions such that if
se ∈ ŝe ∈ ŜE (se is a sub-execution in abstract state ŝe) and ∃se′. se τ⇒ se′,
then

– se′ must be contained in some abstract state: ∃ŝe′ ∈ ŜE. se′ ∈ ŝe′.
– The abstract transition relation includes the concrete extension: ŝe

τ̂→ ŝe′.

These conditions ensure that the states of the abstract transition system are
closed with respect to the extension relation on sub-executions. Finally, all states
in a “forward system” must be reachable from ŜEinit and in a “backward sys-
tem” they all must reach ŜEfin, both via forward transitions.

4 Dataflow Analysis

Concrete Transition System

Abstract Transition System

Abstract Transition System

Dataflow Analysis

Abstract Transition System

Abstract Transition System

Dataflow Analysis

Concrete
Transition

System

Abstract
Transition

System

Abstract
Transition

System

Fig. 3:
Dataflow
analyses
implement
abstractions

Dataflow is a sound but incomplete algorithm for identifying prop-
erties that are true of all executions of system C. Soundness en-
sures that all the discovered properties hold for all executions in
E and the incompleteness means that some true properties may
be missed. Thus, the set of executions denoted by these properties
denotes an over-approximation Ẽ of C’s true set E of valid exe-
cutions (the˜symbol denotes components and results of dataflow
analyses, as shown in Figure 3). The dataflow algorithm, denoted
DatA below, assumes the existence of a finite abstract transition
system Â of the concrete system C. For each ŝe ∈ ŜE it computes
predicate p̃ that identifies set [p̃] such that SE∩ ŝe ⊆ [p̃] ⊆ ŝe ([p̃]
is a tighter over-approximation of the valid sub-executions within
ŝe). Each set [p̃] can be used to implement a state s̃e of another
abstract transition system on which other dataflow analyses exe-
cute, as described below. The output of the executed analysis is
an abstract state transition system Ã = 〈S̃E, S̃Einit, S̃Efin, τ̃〉.

DatA traverses the states of Â using its transition relation τ̂ to consider sets
of increasingly longer concrete sub-executions in AllSE. It begins by considering

sub-execution set S̃E0 = ŜEinit for forward analyses and = ŜEfin for backward

and its state is initially the set of predicates P̃0 such that SE ∩ S̃E0 ⊆ [P̃0].

In each iteration DatA considers extensions of S̃Ei under τ̂ and updates P̃i
to ensure that SE ∩ S̃Ei ⊆ [P̃i] until it reaches a point where SE ⊆ [P̃n]. The
algorithm operates at the granularity of individual abstract states. For each state
ŝe it maintains a separate predicate p̃i and in each iteration extends S̃Ei just

with extensions along a specific pair of abstract states: (S̃Ei ∩ ŝe)
τ̂⇒ ŝe′ using

analysis-provided transition function τ̃ and merge function µ̃. Given abstract

states ŝe
τ̂⇒ ŝe′, τ̃ takes the predicate p̃ at ŝe as well as descriptions of ŝe and

ŝe′ and computes predicate p̃′ at ŝe′ that contains the extensions of the sub-
executions in [p̃]. µ̃ takes in predicates p̃ and q̃ and returns predicate r̃ such
that [p̃] ∪ [q̃] ⊆ [r̃]. DatA combines these to compute predicate p̃′i+1 at state ŝe′

via p̃′i+1 = µ̃(τ̃(ŝe, ŝe′, p̃i), p̃
′
i). The algorithm thus maintains the above invariant

at the granularity of each abstract state: ∀i, ŝe ∈ ŜE. SE ∩ S̃Ei ∩ ŝe ⊆ [p̃i].
Because the size of the encodings of the predicates is bounded, the number of
different predicates must also be bounded. As such the algorithm must reach a
point where P̃i+1 = P̃i, meaning that [P̃i] already includes the next extension of

S̃Ei and thus all of its subsequent extensions.

Iteration

0

1

…

n

AllSE

𝑆𝐸 𝑆𝐸0

𝑃0

AllSE

𝑆𝐸 𝑆𝐸1

𝑃1

AllSE

𝑆𝐸 𝑆𝐸𝑛

𝑃𝑛

𝑠𝑒 ′

𝑝 𝑖′

𝜏 (𝑠𝑒 , 𝑠𝑒 ′, 𝑝 𝑖)

𝑆𝐸

𝑃𝑖

𝑆𝐸

Iter

0

1

…

n

AllSE

𝑆𝐸𝑖

Sub-executions of
increasing length

𝑆𝐸 ∩ 𝑠𝑒 ′

𝑠𝑒

𝑝 𝑖
𝑆𝐸 ∩ 𝑠𝑒

𝑠𝑒 ′

𝑝 𝑖+1′ = 𝜇 (𝑠𝑒 , 𝜏 𝑠𝑒 , 𝑠𝑒
′, 𝑝 𝑖 ,

 𝑠𝑒 ′, 𝑝 𝑖′)

𝜏 (𝑠𝑒 , 𝑠𝑒 ′, 𝑝 𝑖)

𝑆𝐸 ∩ 𝑠𝑒 ′

Iter i Iter i+1
𝑠𝑒

𝑝 𝑖+1
𝑆𝐸 ∩ 𝑠𝑒

𝑠𝑒 𝐴

𝑠𝑒 𝐵

𝑠𝑒 𝐷

𝑝 𝐴

𝑝 𝐵

𝑝 𝐷1⋀ 𝑝 𝐷2

𝑠𝑒 𝐶

𝑝 𝐶1⋀ 𝑝 𝐶2

𝑝 𝐴

𝑝 𝐵 𝑝 𝐶1 𝑝 𝐶2

𝑝 𝐷1 𝑝 𝐷2

𝑠𝑒 𝐴

𝑠𝑒 𝐵

𝑠𝑒 𝐷

𝑠𝑒 𝐶

Analysis Results New Abstraction

𝑠𝑒
𝑝 𝐴

Analysis Results New Abstraction

𝑠𝑒 𝐵
𝑝 𝐵1⊕𝑝 𝐵2

𝑠𝑒 𝐶
𝑝 𝐶1⊕𝑝 𝐶2

𝑠𝑒 𝐴
𝑠𝑒 𝐴

𝑠𝑒 𝐵
𝑠𝑒 𝐵1

𝑠𝑒 𝐶
𝑠𝑒 𝐶1

𝑠𝑒 𝐵2

𝑠𝑒 𝐶2

𝑆𝐸

𝑠𝑒 = 𝑝 𝑆

𝑝 𝐶𝑗𝑖

𝑝 𝐶𝑘𝑖

Loose:𝜏 𝐶𝑘 𝑝 𝑆, 𝑝 ′𝑆, 𝑝 𝐶𝑘 𝑖

Tight: 𝜏 𝐶𝑘(𝑝 𝐶𝑗 𝑖 , 𝑝 ′
𝐶𝑗
𝑖 , 𝑝
𝐶𝑘
𝑖)

𝑝 ′𝐶𝑗𝑖 𝑝 ′𝐶𝑘𝑖

𝑠𝑒 ′ = 𝑝 ′𝑆

𝐴

𝑠𝑒 𝐴

𝑝
𝐴

𝑠𝑒 𝐴

𝑠𝑒
𝐴

𝑠𝑒 𝐵

𝑠𝑒 𝐶

𝑝
C1

𝑝
C2 ⊕

𝑝
B1

𝑝
B2 ⊕

𝑠𝑒 𝐵

𝑠𝑒
𝐵1

𝑠𝑒
𝐵2

𝑠𝑒 𝐶

𝑠𝑒
𝐶1

𝑠𝑒
𝐶2

Analysis Results New Abstraction

Fig. 4: Implementation of abstraction.

The predicates computed by an
analysis at each state of abstraction
Â can be used to implement another
abstraction Ã. This is illustrated in
Figure 4, which shows the computa-
tion of the CFG+Parity abstraction
from Figure 2(d). The left sub-figure
shows states xŝe of the CFG abstrac-
tion, with their associated predicates

xp̃ computed by the Parity analysis.
The right one shows the abstraction
defined by these predicates, with states xs̃e. Predicate Ap̃ constrains the sub-
executions in state Aŝe to those where y is even and z is odd and denotes a
single state in Ã. Predicates at states B ŝe and C ŝe can be decomposed into
two disjoint cases: “y is even, z is odd” and vice versa. Each case implements
a separate state of abstraction Ã. Ã denotes fewer executions than Â because:
(i) individual states in Ã denote fewer sub-executions than their counterparts in

Â and (ii) the splitting of states in Â causes some state transitions that were

present in Â to be excluded from Ã (i.e. the edges are sparser).

Types of Composition Consider the execution of transition function τ̃ of

some analysis on transition s̃eS
τ̃S

⇒ s̃e′S of an abstraction implemented by server
analysis S. τ̃ takes as input predicates P and P ′ that describe states s̃eS and s̃e′S

and uses them, along with µ̃, to compute p̃′i+1. This predicate over-approximates

the set of valid sub-executions in state s̃e′S that have been considered up to
iteration i + 1: SE ∩ S̃Ei+1 ∩ s̃e′S ⊆ [p̃′i+1]. The descriptions P and P ′ must

thus over-approximate the valid sub-executions in s̃eS and s̃e′S that have been
considered up to the preceding iteration i.

A simple choice is P = p̃S and P ′ = p̃′S , since predicates p̃S and p̃′S corre-
spond to all sub-executions: SE ∩ s̃e′S ⊆ [p̃] and same for p̃′S . This is denoted
loose composition and corresponds to one analysis executing to completion be-
fore its predicates are used by other analyses. However, suppose that multiple
client analyses C1, ..., Cn are running on the same abstraction, their transfer and
merge functions executed concurrently in each iteration. In this case, in iteration

i predicate p̃
Cj

i computed by analysis Cj over-approximates the valid executions
in state ŝe that have been considered at i. Thus, the transition function τ̃Ck

of analysis Ck can choose P = p̃
Cj

i (j 6= k) and same for P ′. Further, since
the intersection of over-approximations is itself an over-approximation, an even
better choice is P =

∧
l 6=k p̃

Cl
i and P ′ =

∧
l 6=k p̃

′Cl
i . This approach, denoted tight

composition, was performed manually by Wegman and Zadeck [19] to combine
constant propagation and unreachable path elimination. Lerner, et al. [10] de-
velop an analysis framework that automates tight composition and show that
tight composition is more powerful than loose for programs with loops.

Application of Framework to Analysis Types We now discuss how tra-
ditional types of analysis fit into our framework. In may-analyses, predicates
describe the disjunction of facts that may hold on some of the sub-executions
within a given abstract state. As longer sub-executions are considered the merge
function µ̃ adds more disjuncts to include their information.Thus, as more sub-
executions are added to S̃Ei, the disjuncts expand set [p̃] at each abstract state

ŝe to ensure that SE ∩ S̃Ei∩ ŝe ⊆ [p̃] always holds. In must-analyses, predicates
are conjunctions of facts that must hold for all the sub-executions within an
abstract state. The predicate at each abstract state is a conjunction of term. As
more sub-executions are considered τ̃ computes the conjuncts that describe them
and µ̃ removes conjuncts as needed to ensure that the remaining ones hold for
all sub-executions that have been considered. As conjuncts are dropped, the sets
denoted by each predicate grow larger, always maintaining the above condition.

Optimistic and pessimistic analyses [19] offer a different tradeoff in analysis
design. Optimistic analysis initializes every non-starting abstract state ŝe with a
predicate p̃ such that [p̃] under-approximates SE∩ ŝe, usually just [p̃] = ∅. Then,
as more sub-executions are considered during analysis, p̃ is expanded to account
for them all, ultimately reaching an over-approximation of SE ∩ ŝe. In contrast,
pessimistic analyses initialize p̃ to be an over-approximation of SE ∩ ŝe, usually
[p̃] = ŝe. While the more aggressive assumptions of optimistic analyses make
them more accurate, pessimistic analyses converge more quickly and produce
conservative results even if they are terminated prematurely.

5 General Abstract Representation of Analysis Results
Section 4 established a common framework for reasoning about how dataflow
analyses operate and how they can compose. A server analysis provides an ab-
stract transition system on which the transition and merge functions of client
analyses run. These functions query from the server or concurrently-executing

clients descriptions of the predicates that define the abstract states on which
they run. This section describes a portable interface for describing these predi-
cates that enables generic composition of a large class of analyses. It begins by
defining a general concrete transition system that captures the key properties of
Turing-Complete transition systems, and then formalizes the notion of “Abstrac-
tion Granularity” predicates in terms of the information that can be observed
about the sub-execution sets they denote. It then shows that the observable
information about the individual state components within these sub-executions
induces a state transition system that is very closely related to the original tran-
sition system. Sub-executions of this transition system form a compact portable
representation of the information content of these predicates.

We focus on predicates p̃ that provide information at the granularity of the
abstract transition system implemented by their analysis and cannot be used
to infer more precise information about the sub-executions within each abstract
state. In other words, all the information that can be queried about the pred-
icates by other analyses is encoded in the structure of the abstract transition
system the predicates denote and there is no additional information hidden in
their internal encodings. Specifically, Abstraction Granularity (AG) means that
for any query function f that may be applied to the set of sub-executions [p̃]
induced by predicate p̃, it must be true that f([p̃]) =

⋃
se∈[p̃] f({se}). Since the

information returned on the entire set is the union of the information returned
on its individual sub-executions, the different sub-executions cannot be distin-
guished from each other and as Section 5.2 discusses in more detail, the same
must be true of their individual states and their internal components. For exam-
ple, let set [p̃] contain two sub-executions and let s and s′ be their final states.
s computes 1 + 2 and s′ computes 5× 2. A query of the operation performed by
the last states in [p̃] would return set {+,×}, while queries of their inputs would
return {1, 5} and {2}. Finally, a query of the output of the computations would
return the set {3 = 1 + 2, 7 = 5 + 2, 10 = 5× 2, 2 = 1× 2}, which includes all the
permutations of operation and input values to maintain consistency among all
the results of all queries. The observable properties of sub-execution sets denoted
by AG predicates act like a single sub-execution of a variant of the concrete tran-
sition system where the concrete values, memory locations and operations are
replaced by sets of these entities. This close relationship between the concrete
and the AG transition systems makes it possible to use the AG system as a
portable and easy-to-use representation for accessing the information provided
by AG predicates from arbitrary analyses.

Section 5.1 presents a generic formalization of the structure of individual
transition system states that captures the key properties of Turing-Complete
transition systems. Section 5.2 then discusses the limits on the information avail-
able about the sub-executions denoted by AG predicates, as well as their states
and internal state components. It then presents a way to convert the original
transition system into a variant that simulates the observable behavior of sub-
executions denoted by AG predicates.

5.1 Structure of Concrete States and Sub-Executions

We now define the states of concrete transition system C (defined in Section 3)
as a generic state structure that can be adapted to represent any real-world
transition system. Let state s ∈ S = 〈σ ∈ Store, κ ∈ Comp〉, where

– Store = MemLoc 7→ Data: set of mappings from memory locations to their
contents, where
• Data = V alue+MemLoc+Operation: set of data kept in the store.
• V alue: set of data items, including scalars, arrays and classes.
• MemLoc: set of memory locations.
• Operation: set of operations that may be performed.

– Comp = (Operation×MemLoc× (MemLoc× ...)) 7→ (Data× Comp): set
of computations, which include an operation, the memory location where it
will store its results as well a finite tuple of the MemLocs where its operands
are stored. Computations return a pair with the Data to be written to the
output memory location and the Comp of the next state.

The store and computation of state s are denoted s.σ and s.κ, respectively.
For any ml ∈ MemLoc s.σ[ml] denotes the Data element stored at ml. The
individual fields of s.κ are denoted as follows: (i) s.κ.op is the Operation field,
(ii) s.κ.outML is the output MemLoc, (iii) s.κ.inML0, ..., s.κ.inMLn denote all
the input MemLocs, (iv) s.κ.outData is the output Data, and (v) s.κ.outComp
is the output Comp. Further, each element data of set Data (i.e. element of set
V alue, MemLoc or Operation) is denoted a state component since all larger
state structures are built from these units.

This state structure is very general and can be instantiated to represent an
imperative language or the λ calculus, depending on the definition of the transi-
tion relation τ , the choice of operations and details such as whether MemLocs
are typed or untyped and whether the number of code locations is finite (e.g. lines
of code in an imperative program) or unbounded (e.g. λ calculus or Forth [8],
which generate computations dynamically).

5.2 Abstraction Granularity

Sub-Execution Sets and Their Visible Behaviors Recall that we are fo-
cused on predicates p̃ that have Abstraction Granularity(AG): they only provide
information at the granularity of the abstract transition system implemented by
their analysis. Formally, consider all the abstract states s̃e ∈ S̃E implemented
by some analysis and the predicates p̃ that denote them ([p̃] = s̃e). For any
query function f that takes sets of sub-executions as input it must be true that
f([p̃]) =

⋃
se∈[p̃] f({se}). A concrete sub-execution is a sequence of states and

each state is constructed from components, each of which is an element of set
Data. As such, function f may inspect any component(s) of any state(s) in any
sub-execution ∈ [p̃] and return just these components or a function of them (e.g.
set of the sum of an array’s entries in the last state of all sub-executions ∈ [p̃]).
To ensure that the results of all such query functions are consistent, the above
constraint must apply to individual states within sub-executions and the individ-
ual components of those states. For example, let se.last denote the last state of a

sub-execution se. If se ∈ [p̃] and f({se}) = se.last.σ[m] for some m ∈MemLoc
then f([p̃]) = {se′.last.σ[m] | se′ ∈ [p̃]}.

By definition the result of every query on an abstract state denoted by an
AG predicate must be a set. This means that from the perspective of out-
side observers the sub-executions in [p̃] are sequences of sets of states that
are constructed from sets of state components. Figure 5 illustrates the rela-
tionship between the concrete sub-executions ∈ [p̃] and their observable be-
havior, based on the code in Figure 2. On the left the figure shows the code
and the CFG abstraction for this code, which has three states, A, B and C.
The top-right shows two representative full executions, which contain multiple
forward sub-executions. All the sub-executions that terminate in a column are
members of the corresponding abstract state. The bottom-right of the figure

𝜅
𝜎

x↦10
y↦0

Abstract State Denoted by AG Predicate

A
G

 S
u

b
-

Ex
ec

u
ti

o
n

𝜅

𝜎

C
o

n
cr

et
e

Su

b
-e

xe
cu

ti
o

n
s

(s
et

 m
ay

 b
e

u
n

b
o

u
n

d
ed

)

x=10
y=0
z=1

x=9
y=0
z=1

z↦1

x<10

x↦9
y↦0 z↦1

x<10

x↦9
y↦0

x++;y++;z++

x↦10
y↦1 z↦2

x<10

CFG Abstract Transition System

A
b

st
ra

ct

St
at

e

A B C B

x↦{…,9,10,…}
y↦{0,1,…}
z↦{1,2,…}

x++;y++;z++

A C
x={…,9,10,…}

y={0}
z={1}

x=input_read(); y=0; z=1;
while(x<10)
{ x++; y++; z++; }

A:
B:
C:

Application

A B C

⇒False

⇒True ⇒False

x↦{…,9,10,…}
y↦{1,2,…}

z↦1

z↦{2,3,…}

x=input_read();
y=0; z=1;
while(x<10)
{ x++; y++; z++; }

A:

B:
C:

Application

CFG Abstract
Transition System

A

B

C

…

Similar
States

x<10

{True,False}

⇒

B
Abstract State’s Visible Behaviors

A
G

 S
u

b
-

Ex
ec

u
ti

o
n

𝜅

𝜎

C
o

n
cr

et
e

Su
b

-e
xe

cu
ti

o
n

s
(s

et
 m

ay
 b

e
u

n
b

o
u

n
d

ed
)

x=9
y=0
z=1

x++
y++
z++

x↦10
y↦1
z↦2

x<10

A
b

st
ra

ct

St
at

e

A B C B

x↦{-∞ - ∞}
y↦{0,1,…}
z↦{1,2,…}

x++;y++;
z++

x↦{-∞ - ∞}
y↦{0,1,…}
z↦{1,2,…}

x=read_in();
y=0; z=1;
while(x<10)
{ x++; y++;
 z++; }

A:

B:
C:

Application

CFG Abstract
Transition

System

A

B

C

…

x<10

{True,False}

⇒

x↦9
y↦0
z↦1

x<10

x↦10
y↦0
z↦1

x<10 ⇒

x=10
y=0
z=1

⇒

Similar
States

Abstract State Denoted by
AG Predicate

⇒

True

False

False

x={-∞ - ∞}
y={0}
z={1}

𝜅

𝜎

A C B
Abstract State’s Visible Behaviors

x↦9
y↦0
z↦1

Fig. 5: Observable behavior of sub-execution sets de-
noted by AG predicates

shows this abstraction’s
visible behaviors. For in-
stance, if query function f
reads the value computed
byOperation < in the last
state of any sub-execution
∈ B then it must return
set {True,False}, which
is all the V alues com-
puted in all the last
states. If f reads the value
stored at MemLoc z in
the last state of an sub-
execution ∈ C, it must
return {1, 2, ...}. This is
true of any function that
accesses state components
or more complex functions
over multiple components
or states.

Since sub-executions in
each abstract state have
variable lengths we must
define what is meant by a query reading the components of “some specific state”
in a sub-execution set. We define state identity at the granularity of the abstract
transition system. Concrete states s and s′ are considered similar if they are
the last states of concrete forward sub-executions se and se′ ∈ s̃e (first state for
backward sub-executions). The three sets of similar states are marked in Fig-
ure 5 with a different symbol. The result of a query on some state s is the union
of the results it returns on all states similar to s.

AG Transition Systems The key insight is that the observable behaviors of
set [p̃], denoted by AG predicate p̃, can be formalized as another state transition
system, denoted the AG transition system such that a single sub-execution of

this system denotes all the observable behaviors of [p̃]. This is implied directly
from the requirement that the results of queries on [p̃] must be consistent: a query
on the outputs of an operation must return a set consistent with the execution
of the operation on the subsets of Data returned by queries of its inputs, which
in turn must be consistent with the state of the store. The dependences among
query results induce a state transition system that is structurally very similar to
the concrete transition system, making it easy for analyses to read and create.

State Structure: AG states are defined such that each denotes the observable
properties of an equivalence class of similar concrete states. Given AG state
s, the corresponding set of similar concrete states is [s] (symbol t identifies AG
states and associated entities such as sub-executions and state components). The
results of all queries on set [p̃] decompose into reads of individual state compo-
nents of one or more of its state similarity sets and must return subsets of sets
V alue, MemLoc or Operation. To model this AG states are built from subsets
of these sets and all fields of AG states such as the store σ and computation κ
are constructed from these subsets. Formally, the states of AG are defined as
S = 〈σ ∈ Store, κ ∈ Comp〉, where
– Store =(P (MemLoc)× P (Data))× Store
– Comp=(P (Operation)×P (MemLoc)×(P (Data)× ...))7→(P (Data)× Comp)
S is identical to the definition of concrete system states S, except that (i) all
instances of sets V alue, MemLoc and Operation are replaced with their power
sets and (ii) the store is modeled as an ordered list of 〈P (MemLoc) 7→ P (Data)〉
pairs rather than a function from MemLocs to Data elements, for reasons de-
scribed below. Like above, subsets of Data (i.e. an element of set P (V alue),
P (MemLoc) or P (Operation)) are denoted AG components.

State and Transition Semantics: First, we define the semantics of an individual
AG state. Given AG state s consider the queries that read the fields of concrete
states ∈ [s]. A query that reads field κ.op of all these states must produce the
set {s.κ.op | s ∈ s} ⊆ Operation. s.κ.op is thus defined to be this set. The field
s.σ and the other sub-fields of s.κ are defined the same way.

We now define the semantics of AG state transitions. Given AG states s and
s′, let Trans be the set of concrete state transitions from members of [s] to mem-

bers of [s′]: {〈s ∈ [s], s′ ∈ [s′]〉 | s τ→ s′}. If Trans 6= ∅ we define an AG state

transition s
τ→ s′. AG state s′ must be consistent with the execution of Comp s.κ

in each pair 〈s, s′〉 ∈ Trans. The execution of s.κ affects s′ in two ways: (i) s′.κ =
s.κ.outComp and (ii) s′.σ[s.κ.outML] is mapped to s.κ.outData. To capture this
we must first ensure that the outputs s.κ.outData and s.κ.outComp are valid.
From the perspective of queries, s.κ.op =

⋃
s∈s s.κ.op and each Operation in set

s.κ.opmay read as input any element ∈ s.σ[s.κ.inMLi] =
⋃
s1,s2∈s s1.σ[s2.κ.inMLi].

To maintain consistency s.κ.outData and s.κ.outComp must be the sets of
the outputs of all of the above operations running on all of the above inputs:
{op(..., inDatai, ...) | op ∈ s.κ.op, inDatai ∈ s.κ.inDatai}. Further, the results
s.κ.outData and s.κ.outComp must be written to s′: (i) s′.σ[s.κ.outML] ⊇
s.κ.outData and (ii) s′.κ ⊇ s.κ.outData The relation is a superset rather than
equality since there may be transitions to some concrete states ∈ [s′] from con-

crete states outside of [s], which may add additional elements of Comp and Data
to s′.σ[s.κ.outML] and s′.κ, respectively.

We now define the AG store. The mapping of some ml ⊆ MemLoc in store
s.σ[ml] is data ⊆ Data such that elements data ∈ data were written to some
ml ∈ ml earlier in its respective sub-execution and not subsequently overwritten.
The contents of data can be computed by considering the assignments in AG
states that precede s in [p], from newest to oldest. If we reach state sj and observe
an assignment of mlj ⊆ MemLoc to dataj ⊆ Data we add dataj to data and
remove mlj from consideration. This continues until all elements in ml have
been eliminated. This definition means that AG stores must be structured as an
ordered list of assignments 〈mlj 7→ dataj〉. The first pair denotes the assignment
performed in the AG state that immediately precedes ∈ s in the sub-executions
in [p]. The next pair denotes the state that precedes that one, etc.

Reviewing, we have presented AG predicates and showed how the results of
queries on them can be modeled as a single sub-execution of an AG transition
system. This transformation replaces the set (possibly unbounded) of concrete
sub-executions in an abstract state with a single AG sub-execution, where ev-
ery AG state component is a set (possibly unbounded) of elements in V alue,
MemLoc and Operation. By organizing abstract state descriptions with the
bounded-size aspects (structure of AG states) at the highest level and the un-
bounded aspects (contents of AG components) at a lower level, we make them
accessible by client analyses at analysis-time. Further, by wrapping AG com-
ponents behind an interface we enable them to be transparently combined and
related via appropriate implementations of interface methods.

6 Compositional Analysis Interface

𝜅
𝜎

x↦10
y↦0

Abstract State Denoted by AG Predicate

A
G

 S
u

b
-

Ex
ec

u
ti

o
n

𝜅

𝜎

C
o

n
cr

et
e

Su

b
-e

xe
cu

ti
o

n
s

(s
et

 m
ay

 b
e

u
n

b
o

u
n

d
ed

)

x=10
y=0
z=1

x=9
y=0
z=1

z↦1

x<10

x↦9
y↦0 z↦1

x<10

x↦9
y↦0

x++;y++;z++

x↦10
y↦1 z↦2

x<10

CFG Abstract Transition System

A
b

st
ra

ct

St
at

e

A B C B

x↦{…,9,10,…}
y↦{0,1,…}
z↦{1,2,…}

x++;y++;z++

A C
x={…,9,10,…}

y={0}
z={1}

x=input_read(); y=0; z=1;
while(x<10)
{ x++; y++; z++; }

A:
B:
C:

Application

A B C

⇒False

⇒True ⇒False

x↦{…,9,10,…}
y↦{1,2,…}

z↦1

z↦{2,3,…}

x=input_read();
y=0; z=1;
while(x<10)
{ x++; y++; z++; }

A:

B:
C:

Application

CFG Abstract
Transition System

A

B

C

…

Similar
States

x<10

{True,False}

⇒

B
Abstract State’s Visible Behaviors

A
G

 S
u

b
-

Ex
ec

u
ti

o
n

𝜅

𝜎

C
o

n
cr

et
e

Su
b

-e
xe

cu
ti

o
n

s
(s

et
 m

ay
 b

e
u

n
b

o
u

n
d

ed
)

x=9
y=0
z=1

x++
y++
z++

x↦10
y↦1
z↦2

x<10

A
b

st
ra

ct

St
at

e

A B C B

x↦{-∞ - ∞}
y↦{0,1,…}
z↦{1,2,…}

x++;y++;
z++

x↦{-∞ - ∞}
y↦{0,1,…}
z↦{1,2,…}

x=read_in();
y=0; z=1;
while(x<10)
{ x++; y++;
 z++; }

A:

B:
C:

Application

CFG Abstract
Transition

System

A

B

C

…

x<10

{True,False}

⇒

x↦9
y↦0
z↦1

x<10

x↦10
y↦0
z↦1

x<10 ⇒

x=10
y=0
z=1

⇒

Similar
States

Abstract State Denoted by
AG Predicate

⇒

True

False

False

x={-∞ - ∞}
y={0}
z={1}

𝜅

𝜎

A C B
Abstract State’s Visible Behaviors

x↦9
y↦0
z↦1

AG Sub-execution

{0}
{T, F}
{0,…} {0,…}

…

Set of Sub-executions

U
n

b
o

u
n

d
ed

 …

Sin
gle

Bounded

A

Unbounded

Bounded

A B C

B C B
0

F
0

𝜎 [𝑦]
𝜅.outData

0
T
0 0

F
1

𝜎 [𝑦]
𝜅 .outData

Unbounded

Fig. 6: AG predicates as sub-
execution sets or a single AG
sub-execution

This section defines a portable interface to com-
municate analysis results that allows clients to
give servers a source code expression and ask for
opaque objects that denote the sets of values,
memory locations or operations this expression
evaluates to. Each object (i) over-approximates
the sets of elements the its source expression de-
notes given and (ii) implements basic set-related
methods. We show that this is sufficient to en-
able clients to (i) portably infer new information
and (ii) build Abstraction Granularity predi-
cates to represent their own information.

The AG transition system defined in Sec-
tion 5.2 is a useful normal form for analysis re-
sults because it describes AG predicates not as
sets of sub-executions of the concrete system but
as a single AG sub-execution, built from sets of
concrete state components. Figure 6 illustrates this difference for the code in Fig-
ure 2, focusing on queries of the κ.outData field and σ[y] in the last state of every
sub-execution ∈ [p̃]. The raw set [p̃] is portable across all analyses because it is

expressed purely in terms of the concrete transition system. However, because its
size may be unbounded, its contents cannot be directly enumerated. This makes
it impossible for client analyses to construct the set of all κ.outData instances.
In contrast, because the high-level structure of AG sub-execution is bounded in
size, clients can directly access the last AG state s and its s.κ.outData field in
bounded time.

The AG components returned by such queries are opaque objects that (i)
cannot be directly inspected and (ii) denote potentially unbounded sets that
cannot be enumerated in general (we denote such objects the representations
of AG components). Below we show how to define the interface that must be
provided by representations to support the two key use cases. First, clients need
to create representations of their information at each abstract state in terms
of an AG sub-execution. Since no analysis can accurately model all aspects of
an application on its own, clients need to federate the AG component repre-
sentations they compute with those computed by multiple other analyses into
a single representation of an AG sub-execution. Second, clients need to make
inferences about possible sub-executions to make decisions about the structure
of the AG sub-executions they create. Section 6.1 discusses how AG components
are created and how some of their properties can be determined portably. Sec-
tion 6.2 then considers the operations that analyses must implement in their AG
component representations to enable clients to combine them into their own AG
sub-execution representations.

6.1 Creation of AG Components
Client analyses create AG component representations for their use in two ways.
First, they can query specific components of AG states and receive the corre-
sponding representations computed by different analyses. Each representation
will denote a different set of concrete state components since each analysis com-
putes a different approximation. This supports clients that need information
about specific portions of the application but not clients that can perform sim-
plifying transformations. For example, if it is known that a=x+y and b=x-y, then
expression a-b can be replaced with expression 2*y. A client that performs this
replacement still needs to query the AG components that denotes the values of
expressions 2 and y and/or 2*y, even though they do not exist in the original
code. As such, it must be possible to create representations for AG components
that exist in original sub-executions and ones that are newly generated.

Although in general AG components cannot be enumerated due to their
unbounded size, there are ways for clients to learn more about them. First, since
equality relations may = and must = are evaluated at analysis time and return
True or False, analyses can use them to create complex structures such as the
ordered list representation of AG Stores described in Section 5.2. Further, in
many cases AG components are actually finite in size. For example, the result
of any boolean operation is known to be either True or False and in Figure 1
the set of values printed is just {10}. The contents of such AG components
can be enumerated and used to make compile-time decisions. Further, analyses
can probe the properties of AG components by creating expressions that involve

them and querying the AG components that denote these expressions’ values. For
instance, the possible values of variables x and y can be compared by taking their
AG Data component representations and querying the AG Data component
of expression x < y. Since this AG Data component is finite, it can be fully
enumerated to to determine whether it is {True}, {False} or {True, False}.

6.2 Interface to Enable Clients to Create AG Sub-executions
We now focus on creating an interface that enables analyses to create the AG
sub-executions that define their abstract states. Figure 7 shows the key pieces of
an AG sub-execution, focusing on a single AG state and how it connects to the

𝑜𝑝

𝑖𝑛𝐷𝑎𝑡𝑎0

𝑖𝑛𝐷𝑎𝑡𝑎𝑘

…

𝑜𝑢𝑡𝐷𝑎𝑡𝑎

𝑜𝑢𝑡𝐶𝑜𝑚𝑝

↦
 …

𝑚𝑙0

𝑑𝑎𝑡𝑎0

↦

𝑚𝑙1

𝑑𝑎𝑡𝑎1

↦

𝑚𝑙𝑛

𝑑𝑎𝑡𝑎𝑛

𝜅

𝜎
𝑠

𝑜𝑝

𝑖𝑛𝐷𝑎𝑡𝑎0

𝑖𝑛𝐷𝑎𝑡𝑎𝑘

…

𝑜𝑢𝑡𝐷𝑎𝑡𝑎

𝑜𝑢𝑡𝐶𝑜𝑚𝑝

↦
 …

𝑚𝑙0

𝑑𝑎𝑡𝑎0

↦

𝑚𝑙1

𝑑𝑎𝑡𝑎1

↦

𝑚𝑙𝑛

𝑑𝑎𝑡𝑎𝑛

𝜅

𝜎
𝑠 ′

𝑠
𝜎
𝑠 ′

…

Equality Relations

𝑖𝑛𝐷𝑎𝑡𝑎0

𝑖𝑛𝐷𝑎𝑡𝑎𝑘

…

↦
 …

𝑚𝑙0

𝑑𝑎𝑡𝑎0

↦

𝑚𝑙1

𝑑𝑎𝑡𝑎1

↦

𝑚𝑙𝑛

𝑑𝑎𝑡𝑎𝑛

𝜅

𝜎

𝜅 …

𝑜𝑝

Simulation of Operations

𝑜𝑢𝑡𝐷𝑎𝑡𝑎

𝑜𝑢𝑡𝐶𝑜𝑚𝑝

𝑜𝑢𝑡𝑀𝐿

Fig. 7: AG sub-execution structure in
terms of the constituent AG components
and the operations they implement.

following AG state. AG sub-executions
are built by connecting individual
AG components by (i) creating tu-
ples of AG components and (ii)
connecting the inputs of an AG
Operation component to its out-
puts. First, to create usable tu-
ples of AG component represen-
tations, these representations must
support a notion of equality. Fig-
ure 8 lists two set relational opera-
tions that approximately determine
whether the contents of these AG
component sets are equal. Second,

given transition s
τ→ s′ it must be

possible to connect the results of
computation s.κ to s′.σ and s′.κ.
Analyses must thus provide functions that simulate each s.κ.op. These must
take as input AG Data components for each s.κ.InDatai and return AG Data
and Computation components for s.κ.outData and s.κ.outComp, respectively.

Combining AG Components from a Single Analysis Given only AG
component representations implemented by a single analysis, implementing the
above functions is simple because the internal structure of each representation
is available for inspection. For example, consider constant folding, such as might
take place within constant propagation analysis, where AG Data components
may be in states (i) empty set (denotes uninitialized data), (ii) known constant
and (iii) universal set (more than one possible value). Equality operations are im-
plemented by applying the definitions in Figure 8 to the above sets. Operations
are simulated as follows. Let data and data′ ⊆ Data be two AG Data com-
ponents. If both are in state known constant, the operation is applied to these
constants and an AG component with that constant value is returned. Other-
wise, it returns universal set or empty set following the standard semantics of
constant folding expression evaluation. This functionality can be implemented
by any analysis and usually already exists in their transition functions.

a may = b if a ∩ b 6= ∅
a must = b if a may = b and

|a| =
∣∣s′∣∣ = 1

Fig. 8: Equality operations on
sets a, b

Combining AG Components from Mul-
tiple Analyses In practice clients need to
combine AG components from multiple anal-
yses to create a representation of their own
AG sub-executions. This is significantly more
complex because representations from differ-
ent analyses know nothing about each other’s internal state. This means that in
general to accurately compute set equality operations or simulate Operations it
is necessary to write implementations specialized to the representation at hand.

Fortunately, for many common scenarios it is possible to leverage multiple
analyses without requiring them to interact directly. For example, to compute
the AG V alue component for the result of expression x + y we can ask multiple
analyses to concurrently provide AG representations for it. The vector of these
representations can implement a new AG component, where op ∈ Operation is
simulated by calling the op simulator of each analysis element-wise on its own
AG component representations and same for equality. Since each representa-
tions over-approximates the real set of V alues in x+y, their intersection is also
an over-approximation. Thus, it is legal to respond to any function call with
results from the representation that returns the most precise result. Specifically,
two vectors are must = to each other if any of their elements are must = to
each other. Similarly, if any representations in a vector are finite sets, their in-
tersection can be enumerated even if other representations are not finite. This
mechanism, denoted “parallel composition” in our implementation in Section 7,
enables clients to simultaneously utilize multiple server analyses, automatically
leveraging the best one for each situation.

Communicating Structures of AG Components Structures larger than
individual AG components can be communicated in terms of individual AG
components. While simple for bounded structures like Computations, this is
complex for unbounded structures such as Stores, arrays or invariants such
as “variable is not assigned during a given loop”. To compose such structures
it is necessary to walk an AG sub-execution or look at the last AG state of
multiple abstract states. For example, AG Stores are specified in Section 5.2
as an ordered list of assignments, each performed in a different AG state. An
analysis can create the same representation incrementally during the dataflow
analysis. When its transition function τ̃ is called on an abstract state where s
is the last AG state, τ̃ can add the mapping 〈s.outML 7→ s.outData〉 to its
representation of the store until a fixed point is reached. Loop invariants can be
identified in the same way by checking in τ̃ whether 〈s.outML is the variable
in question. This approach is functional but still fairly complex to use. In our
future work we will focus on compact representations for complex AG structures
such as memory regions, which will enable portable representations of entities
such as arrays, lists or graphs using a common interface.

7 Implementation
We have use the above formalism to develop the Fuse compositional analysis
framework as part of the ROSE [15] source-to-source compiler. Fuse is focused on

analysis for imperative programming languages, with active support for C/C++
and plans for supporting other imperative languages such as Fortran and Java.
We have used Fuse to implement and compose the following analyses: liveness
detection, dead-path elimination, array index analysis, constant propagation,
points-to analysis and value numbering. Each analysis was developed indepen-
dently and does not rely on any details of the other analyses, even though the
first four operate on dense control-flow graphs, while the last three are operate
on sparse SSA [6] graphs (there are two versions of constant propagation, a dense
and a sparse).

Framework Structure Fuse is organized around a “Composer” and multiple
“Analyses”. Each analysis provides a transition function and a representation of
AG sub-executions. It is executed by running its transition function on states of
an abstraction implemented by another analysis and implements an abstraction
on which other analyses may run. The analysis implements the AG sub-execution
representation that defines each state of its abstraction. Figure 9 shows how the
composer mediates interactions between analyses. It chains analyses in series or
in parallel, forwarding any function calls that query abstraction properties to the
analysis that implements them (each analysis may implement only a portion of
abstraction functionality, as discussed below). The composer begins by executing
a non-dataflow base analysis that uses information from the raw abstract syntax
tree (e.g. control-flow graph and variable types) to implement an abstraction.
Subsequent analyses run on this abstraction.

Analyses implement an API that specifies both the abstraction graph struc-
ture and each state’s AG sub-execution. Methods getStart and getEnd re-
turn the graph nodes for the application’s entry and exit points. These nodes

D

Composer

A

C

B

D

B
as

e
 Expr2Value

Expr2MemLoc
Expr2Operation

getFuncStart/End

B
as

e

C

A

Analyses

A
P

I Fu
n

ctio
n

s

API Functions
Implemented

by Analyses
B

D

Composer

B
as

e

C

A

Analyses

API Functions
Implemented

by Analyses

B

Fig. 9: Structure of Fuse

implement methods that return
their successors and predecessors,
allowing callers to walk the graph.
In particular, the implementation of
this API in the base analysis exports
the classic control flow graph.

Analyses implement methods to
query the structure of the AG sub-
execution that denotes each abstract
state. To reduce the complexity of
our interface only allows access to
the AG components of the terminal
AG state of the sub-execution (last
for forwards analyses and first for
backwards). Clients get the AG component representation that denotes a given
expression by calling methods Expr2Value, Expr2MemLoc and Expr2Operation,
which are forwarded by the composer to one or more analyses. These methods
return an opaque object of type AGValue, AGMemLoc and AGOperation, respec-
tively, that represent an AG component of the terminal AG state and implement
methods mayEqual and mustEqual. Clients simulate the results of operations on

AG component representations by calling Expr2* on expressions they create (e.g.
call Expr2Value(a+b) to simulate +). Finally, each AG component representa-
tion implements method isFinite that returns whether it denotes a finite set.
If so, method getConcrete returns the components in the set.

To enable analysis developers to focus on their domain of expertise, analyses
may implement only a portion of our interface. Graph access methods can be im-
plemented without implementing the Expr2* methods and each Expr2* method
can be implemented without implementing the others. As Figure 9 shows, the
composer detects missing implementations and finds the analysis to service each
call. Importantly, each Expr2* implemented method must return a valid ob-
ject for all expressions passed as arguments. This ensures that all mayEqual,
mustEqual calls and the simulation of almost every operation must operate on
objects from the same implementation (except pointer arithmetic, which uses an
AGMemLoc and an AGValue as arguments).

Fuse currently supports sequential and parallel loose composition. In loose
composition, defined in Section 4, each analysis must run to completion before
another analysis may use its results. Support for tight composition (also known
as super-analysis [19,10]), where analyses are executed and can communicate
concurrently, is part of our future work. Under sequential composition analyses
that execute later are run on abstract transition systems implemented by prior
analyses and is exemplified by analyses Base and A in Figure 9. Under parallel
composition analyses execute independently on the same abstraction. All API
calls by subsequent analyses are forwarded to all the analyses composed in par-
allel and the AG component representation that is returned is a vector of their
results. Analyses B and C in Figure 9 are composed in parallel. As discussed in
Section 6.2 such vector AG component representations denote the intersection of
their members since the result of any operation on the vector is the most precise
result returned by any member representation.

Case Study We now show how the example in Figure 1 can be analyzed pre-
cisely by composing the following analyses already implemented in Fuse : Con-
stant Propagation, Unreachable Path Elimination and Points-To Analysis. The
composition and how it computes the result are shown in Figure 10.

The composer first executes the Base analysis, which creates an initial ab-
stract transition system from the ROSE Virtual CFG and type information. Each
abstract state contains all sub-executions that end at (forwards sub-executions)
or start at (backwards sub-execution) a given code location. The AGMemLoc ob-
jects it implements model lexical variables precisely but capture no detail on heap
memory or memory accessed through pointers (all these MemLocs are may =
to each other). Similarly, while AGMemValues for literal constants denote a set
with just that constant, AGValues for memory contents denote the universal set.
AGOperations are fully precise except for function pointers. Base implements
the full compositional API: abstraction graphs and each Expr2* function.

Base is followed by a scalar Constant Propagation (CP) analysis, which has
the functionality of the classic Kildall algorithm [9]. CP records at each abstract
state the current mapping from AGMemLocs to AGValues. Its transition function

Composer

int x=5;
int y=12;
int* p;
if(x<y) p = &x;
else p = &y;
print *p+5;

int x=5;
int y=12;
int* p;
if(TRUE) p = &x;
else p = &y;
print *p+5;

Value
Analysis

int x=5;
int y=12;
int* p;
p = &x;

print x+5;

Points-to
Analysis

int x=5;
int y=12;
int* p;

print 10;

Value
Analysis

Original
Program

int x=5;
int y=12;
int* p;
if(x<y) p = &x;
else p = &y;
print *p+5;

Client
Analysis

?

int x=5;
int y=12;
int* p;
if(x<y)
 p = &x;
else
 p = &y;
print *p+5;

Original
Program

Base
Analysis

A:

B:
C:

D:
E:

A

B

C D

E

x↦5
y↦12
p↦?
x<y ↦True

x↦5
y↦12
p↦?

x<y ↦True
*p ↦?
*p+5 ↦?

A

C

E

Expr2Value(x<y) ⟹True

A

B

C D

E

x↦5
y↦12
p↦?

x↦5
y↦12
p↦?
x<y ↦True

x↦5
y↦12
p↦?

x<y ↦True
*p ↦?
*p+5 ↦?

Unreachable
Path

Elimination

x↦5
y↦12
p↦?
x<y ↦True

x↦5
y↦12
p↦x
x<y ↦True

x<y ↦True
*p+5 ↦10

Scalar
Constant

Propagation

Points-to
Analysis

Memory
Constant

Propagation

x,*p↦5
y↦12
p↦x

Expr2MemLoc(x,y,z,p,*p)
Expr2MemLoc(x,y,z,p,*p)

p⇢x

p⇢x

Fig. 10: Composition of Analyses in Fuse .

calls Expr2MemLoc to get the AGMemLocs for each expression’s operands and
updates their mappings. Since these calls are routed to Base, CP’s mappings are
accurate for lexical variables but not other locations (e.g. *p). CP implements
only Expr2Value.

The next analysis is Unreachable Path Elimination (UPE). Since CP does
not implement an abstraction graph, UPE runs on the one from Base. At the ab-
stract node of the if conditional it calls Expr2Value(x<y) to get its result. The
AGValue object o returned by CP denotes the set {True}, which is be accessed
by calling o.getConcrete. UPE’s abstraction graph implementation uses this to
only generate nodes for the if’s true branch.

UPE is followed by a Points-To analysis (PT), which implements the Lhoták
and Chong algorithm [11] and maintains a graph of points-to relationships among
different memory locations. It calls Expr2MemLoc (routed to Base by the Com-
poser) to get the AGMemLocs for the operands of each indirection (&x) or deref-
erence (*p) operation and the graph it creates only maps the AGMemLoc for p to
the AGMemLoc for x. It implements Expr2MemLoc to enable subsequent analyses
to leverage this information.

Finally we run another instance of Constant Propagation (CP2), which has
the functionality of the Wegman, Zadeck analysis [19] when combined with
UPE. CP2’s Expr2MemLoc calls are routed to PT, which resolves points-to re-
lationships and returns the resulting AGMemLoc (returned objects are actually
implemented by Base). Critically, the objects returned by Expr2MemLoc(x) and
Expr2MemLoc(*p) are mustEqual. Thus, when CP2 reads the mapping of *p at
the print operation AGValue that contains 5 (mapped to the x AGMemLoc) is
returned. This allows CP2 to compute that 10 is printed.

8 Related Work

There is an abundance of work in the literature, including abstract interpre-
tation, which bases static program analysis on the properties of abstract sub-
execution paths. Blanchet et al. [3] describe abstract domains, which are sets of
abstract properties of execution traces and are implemented in ASTREE [5], a
static program analysis tool. Rival, et al. [17] generalize abstract domains via

a generic trace partitioning abstract domain and define an abstract transition
system similar to ours.

Lerner, et al. [10] present an analysis framework in which a super-analysis
tightly composes multiple integrated analyses, i.e, ones in which analysis and
transformation are integrated. They develop a mechanism for implicit communi-
cation between component analyses based on graph transformations. This mech-
anism limits client queries to expressions that occur in the program or in a trans-
formed version of the program. Ramsey et al. [16] describe Hoopl, a polymorphic
library that simplifies the addition of new dataflow analyses and transformations
to compilers written in Haskell. Based on the work of Lerner, et al., Hoopl in-
terleaves analysis with transformations. They develop a simple API for use with
their library that has the same constraints as Lerner, et al.

Gulwani, et al. [7] present a method for combining abstract interpreters over
multiple lattices to construct an abstract interpreter for their combination. They
use a logical product of lattices, which refines a reduced product of lattices via the
Nelson-Oppen [14] procedure. The approach in [7] focuses on interpreters that
correspond to convex theories, allowing each interpreter to communicate must-
equality constraints to other interpreters. Our interface supports may-equality
constraints similar to inference on non-convex theories. Unlike [7], our framework
allows the client to construct specific queries similar to ASTREE [5] ASTREE
combines analyses based on communication between the abstract domains dis-
cussed above. However, their interface is based on writing special code to couple
each pair of analyses.

Some domain specific languages for program analysis are well suited for com-
position. In Chord [1], analyses can be written declaratively in Datalog, a do-
main specific language for logical queries. Müller-Olm et al. [13] apply linear
algebra techniques to determine affine and polynomial relations among program
variables. Such frameworks can compose many analyses that fit within their
constraints but do not apply to general analyses.

9 Conclusion

This paper proposes an approach to building compiler analysis frameworks that
simplifies composition of independently-developed analyses by using transition
systems as the underlying formalism. It defines concrete and abstract transition
systems, and shows how the results of dataflow analyses can be used to specify
abstractions that other analyses run on. Transitions systems are a portable ab-
straction that can represent the results of many real analyses, thereby making it
possible for different analyses to leverage each other’s results with no knowledge
of their APIs or internal abstractions and without any coordination between the
groups that developed them. We have developed the Fuse compositional analy-
sis framework based on this abstraction, and integrated this framework in the
ROSE [15] compilation system. Our experience is that this approach greatly sim-
plifies composition of program analyses, thereby making it easy to tailor different
combinations of program analyses to different applications.

References

1. Chord: A Program Analysis Platform for Java. http://pag.gatech.edu/chord/.

2. LLVM Alias Analysis Infrastructure. http://llvm.org/docs/AliasAnalysis.html.

3. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. A static analyzer for large safety-critical software. In PLDI, pages
196–207, 2003.

4. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Conference
Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 238–252, Los Angeles, California, 1977. ACM
Press, New York, NY.

5. P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival.
Combination of abstractions in the astrée static analyzer. In ASIAN, pages 272–
300, 2006.

6. R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Efficiently
computing static single assignment form and the control dependence graph. ACM
Transactions on Programming Languages and Systems, 13(4):451–490, Oct 1991.

7. S. Gulwani and A. Tiwari. Combining abstract interpreters. In PLDI, pages 376–
386, 2006.

8. M. Kelly and N. Spies. Forth: A Text and Reference. Prentice-Hall, 1986.

9. G. A. Kildall. A Unified Approach to Global Program Optimization. In Symposium
on Principles of Programming Languages (POPL), pages 194–206, New York, NY,
USA, 1973. ACM.

10. S. Lerner, D. Grove, and C. Chambers. Composing Dataflow Analyses and Trans-
formations. In Proceedings of the 29th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, POPL ’02, pages 270–282, New York, NY,
USA, 2002. ACM.

11. O. Lhoták and K.-C. A. Chung. Points-to Analysis with Efficient Strong Updates.
In Symposium on Principles of Programming Languages, POPL ’11, pages 3–16,
New York, NY, USA, 2011. ACM.

12. T. Marlowe and B. Ryder. Properties of Dataflow Frameworks. Acta Informatica,
28:121–163, 1990.

13. M. Müller-Olm and H. Seidl. Precise Interprocedural Analysis Through Linear
Algebra. In Proceedings of the 31st ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming languages, POPL ’04, pages 330–341, New York, NY, USA,
2004. ACM.

14. G. Nelson and D. C. Oppen. Simplification by Cooperating Decision Procedures.
ACM Transactions on Programming Languages and Systems, 1(2):245–257, Oct.
1979.

15. D. Quinlan. ROSE: Compiler Support for Object-Oriented Frameworks. In Con-
ference on Parallel Compilers (CPC), 2000.

16. N. Ramsey, J. Dias, and S. L. P. Jones. Hoopl: a modular, reusable library for
dataflow analysis and transformation. In Haskell, pages 121–134, 2010.

17. X. Rival and L. Mauborgne. The Trace Partitioning Abstract Domain. ACM
Transactions on Programming Languages and Systems (TOPLAS), 29(5), Aug.
2007.

18. D. A. Schmidt and B. Steffen. Program Analysis as Model Checking of Abstract
Interpretations. 1503:351–380, Sept. 1998.

19. M. N. Wegman and F. K. Zadeck. Constant Propagation with Conditional
Branches. ACM Transactions on Programming Languages and Systems, 13(2):181–
210, April 1991.

